5 years ago

Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model

Quantifying the interactions among metal mixtures in toxicodynamic process with generalized linear model
Predicting the toxicity of chemical mixtures is difficult because of the additive, antagonistic, or synergistic interactions among the mixture components. Antagonistic and synergistic interactions are dominant in metal mixtures, and their distributions may correlate with exposure concentrations. However, whether the interaction types of metal mixtures change at different time points during toxicodynamic (TD) processes is undetermined because of insufficient appropriate models and metal bioaccumulation data at different time points. In the present study, the generalized linear model (GLM) was used to illustrate the combined toxicities of binary metal mixtures, such as Cu–Zn, Cu–Cd, and Cd–Pb, to zebrafish larvae (Danio rerio). GLM was also used to identify possible interaction types among these method for the traditional concentration addition (CA) and independent action (IA) models. Then the GLM were applied to quantify the different possible interaction types for metal mixture toxicity (Cu–Zn, Cu–Cd, and Cd–Pb to D. rerio and Ni–Co to Oligochaeta Enchytraeus crypticus) during the TD process at different exposure times. We found different metal interaction responses in the TD process and interactive coefficients significantly changed at different exposure times (p< 0.05), which indicated that the interaction types among Cu–Zn, Cu–Cd, Cd–Pb and Ni–Co were time dependent. Our analysis highlighted the importance of considering joint actions in the TD process to understand and predict metal mixture toxicology on organisms. Moreover, care should be taken when evaluating interactions in toxicity prediction because results may vary at different time points. The GLM could be an alternative or complementary approach for BLM to analyze and predict metal mixture toxicity.

Publisher URL: www.sciencedirect.com/science

DOI: S030438941730835X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.