4 years ago

Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils

Influence of compost and biochar on microbial communities and the sorption/degradation of PAHs and NSO-substituted PAHs in contaminated soils
Diffusely contaminated soils often remain untreated as classical remediation approaches would be disproportionately expensive. Adding compost can accelerate the biodegradation of organic contaminants and adding biochar can immobilize contaminants through sorption. The combined use of compost and biochar to reduce polycyclic aromatic hydrocarbon (PAH) and NSO-substituted PAH contamination has, however, not previously been systematically investigated. We have therefore investigated the processes involved (i) through sorption batch experiments, (ii) by monitoring changes in bacterial, fungal and archaeal communities using denaturing gradient gel electrophoresis, and (iii) through degradation experiments with fluorene, phenanthrene, pyrene, carbazole, dibenzothiophene, and dibenzofuran. Sorption coefficients for organic contaminants in soils increased tenfold following 10% compost addition and up to a hundredfold with further addition of 5% biochar. The rate of PAH and NSO-PAH degradation increased up to twofold following compost addition despite increased sorption, probably due to the introduction of additional microbial species into the autochthonous soil communities. In contrast, degradation of PAHs and NSO-PAHs in soil-compost-biochar mixtures slowed down up to tenfold due to the additional sorption, although some degradation still occurred. The combined use of biochar and compost may therefore provide a strategy for immobilizing PAHs and NSO-PAHs and facilitating degradation of remaining accessible contaminant fractions.

Publisher URL: www.sciencedirect.com/science

DOI: S0304389417308324

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.