4 years ago

Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III)

Removal of phosphate from water by amine-functionalized copper ferrite chelated with La(III)
Eutrophication has become a worldwide environmental problem and removing phosphorus from water/wastewater before discharge is essential. The purpose of our present study was to develop an efficient material in terms of both phosphate adsorption capacity and magnetic separability. To this end, we first compared the performances of four spinel ferrites, including magnesium, zinc, nickel and copper ferrites. Then we developed a copper ferrite–based novel magnetic adsorbent, by synthesizing 1,6-hexamethylenediamine–functionalized copper ferrite(CuFe2O4) via a single solvothermal synthesis process followed by LaCl3 treatment. The materials were characterized with X-ray diffraction, transmission electron microscope, vibrating sample magnetometer, Fourier transform infrared spectra and N2 adsorption–desorption. The maximum adsorption capacity of our material, calculated from the Langmuir adsorption isotherm model, attained 32.59mg/g with a saturation magnetization of 31.32emu/g. Data of adsorption kinetics were fitted well to the psuedo–second-order model. Effects of solution pH and coexisting anions (Cl, NO3 , SO4 2) on phosphate adsorption were also investigated, showing that our material had good selectivity for phosphate. But OH competed efficiently with phosphate for adsorption sites. Furthermore, increasing both NaOH concentration and temperature resulted in an enhancement of desorption efficiency. Thus NaOH solution could be used to desorb phosphate adsorbed on the material for reuse, by adopting a high NaOH concentration and/or a high temperature.

Publisher URL: www.sciencedirect.com/science

DOI: S004896971733156X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.