5 years ago

Malathion-induced spermatozoal oxidative damage and alterations in sperm quality of endangered trout Salmo coruhensis

Mine Erişir, Fulya Benzer, Filiz Kutluyer, Mehmet Kocabaş


The use of pesticides has been increased along with increasing the farming activities and has caused environmental impacts deleteriously. In particular, non-target organisms including fish can be affected by toxic effects of pesticides. Therefore, the impacts of malathion (MTN) on oxidative stress and sperm quality were investigated in vitro. The MTN concentrations used on this study were 0 (control), 75, 100, and 125 μg/L. Lipid peroxidation (MDA), non-enzymatic (GSH), and enzymatic (SOD, GSH-Px, and CAT) activities in spermatozoa were examined for determination of oxidative stress status. Our findings showed that motility rate and period of sperm cells significantly decreased with exposure to MTN. Biochemical assays revealed that CAT activity and levels of MDA, GSH increased in spermatozoa based on concentration while activity of GSH-Px and SOD decreased. Consequently, spermatozoa were highly sensitive to MTN exposure. MTN has disruptive effects on sperm quality and caused to oxidative stress in spermatozoa.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0700-0

DOI: 10.1007/s11356-017-0700-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.