5 years ago

First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming

Thermochemical recuperation of waste flue gas heat may be advantageous for improving energy efficiency of hydrocarbon fuel-consuming furnace. The schematic diagram of thermochemical recuperation (TCR) by steam methane reforming is described. Thermodynamics equilibrium analysis of steam methane reforming (SMR) process has been investigated via Gibbs free energy minimization technique to determine the effects of pressure, inlet steam-to-methane ratio and temperature on TCR efficiency. The energy analysis was carried out for temperature range and steam-to-methane ratio of 600–1300 K and 1–6, respectively, at different pressure of 1–20 bar. The results shown that TCR efficiency can be controlled for maximum energy efficiency by the operating pressure, temperature and various inlet feed stocks. The recuperation rate and heat balance of TCR were analyzed for different waste flue gas temperatures, steam-to-methane ratio at mixture inlet and pressure. For the effective operation of thermochemical recuperation it is necessary to use a pressure of less than 10 bar, because in this case the percentage by volume of non-combustible components in the synthesis gas is minimal. The optimal operation conditions for TCR were determined: steam-to-methane ratio is 2 for flue gas temperature 900–1100 K; steam-to-methane ratio is 1 for the temperature range above 1200 K; optimal pressure is 5–10 bar.

Publisher URL: www.sciencedirect.com/science

DOI: S0360544217318625

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.