4 years ago

Discovery of High-Temperature Superconductivity (Tc = 55 K) in B-Doped Q-Carbon

Discovery of High-Temperature Superconductivity (Tc = 55 K) in B-Doped Q-Carbon
Jagdish Narayan, Anagh Bhaumik, Siddharth Gupta, Ritesh Sachan
We have achieved a superconducting transition temperature (Tc) of 55 K in 27 at% B-doped Q-carbon. This value represents a significant improvement over previously reported Tc of 36 K in B-doped Q-carbon and is the highest Tc for conventional BCS (Bardeen–Cooper–Schrieffer) superconductivity in bulk carbon-based materials. The B-doped Q-carbon exhibits type-II superconducting characteristics with Hc2(0) ∼ 10.4 T, consistent with the BCS formalism. The B-doped Q-carbon is formed by nanosecond laser melting of B/C multilayered films in a super undercooled state and subsequent quenching. It is determined that ∼67% of the total boron exists with carbon in a sp3 hybridized state, which is responsible for the substantially enhanced Tc. Through the study of the vibrational modes, we deduce that higher density of states near the Fermi level and moderate to strong electron–phonon coupling lead to a high Tc of 55 K. With these results, we establish that heavy B doping in Q-carbon is the pathway for achieving high-temperature superconductivity.

Publisher URL: http://dx.doi.org/10.1021/acsnano.7b06888

DOI: 10.1021/acsnano.7b06888

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.