4 years ago

Asymmetric Synthesis of Trisubstituted Tetrahydrothiophenes via in Situ Generated Chiral Fluoride-Catalyzed Cascade Sulfa-Michael/Aldol Reaction of 1,4-Dithiane-2,5-diol and α,β-Unsaturated Ketones

Asymmetric Synthesis of Trisubstituted Tetrahydrothiophenes via in Situ Generated Chiral Fluoride-Catalyzed Cascade Sulfa-Michael/Aldol Reaction of 1,4-Dithiane-2,5-diol and α,β-Unsaturated Ketones
Jun Ao, Choong Eui Song, Hailong Yan, Mengying Duan, Yidong Liu, Lu Xue, Shilong Luo, Yu Tan, Wenling Qin
A chiral fluoride-catalyzed asymmetric cascade sulfa-Michael/aldol condensation reaction of 1,4-dithiane-2,5-diol and a series of α,β-unsaturated ketones is described to access chiral trisubstituted tetrahydrothiophene derivatives. The target products, including the spiro tetrahydrothiophene derivatives bearing a five-, six-, and seven-membered ring, were highly functionalized and showed high ee value. This established protocol realized a highly enantioselective reaction with a catalytic amount of KF and Song’s chiral oligoEG via in situ generated chiral fluoride to construct useful heterocyclic skeletons with great complexity.

Publisher URL: http://dx.doi.org/10.1021/acs.orglett.7b00813

DOI: 10.1021/acs.orglett.7b00813

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.