5 years ago

Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals

Vapor sensing with color-tunable multilayered coatings of cellulose nanocrystals
Colloidal cellulose nanocrystals were LBL deposited to form firmly-stacked optical coatings in which the nanorods regulated their head-to-tail association and aligned in the axial-centrifuged direction. The periodically transition from blue to orange of reflected colors was tunable via deposition layer adjustment. While the sensing coating was exposed to vapors of NH3 .H2O, H2O, HCl and HAc, respectively, the color variation in the response process was irreversible at room temperature and highly dependent on vapor diffusion and chemical interface interaction. Consequently, HAc vapor presented the longest sensing transition of wavelength, whereas the alkaline NH3 .H2O displays a less recovery ratio than HAc and H2O at room temperature. Under heating at 50°C, the sensed coatings could mostly be restored to their original state except HCl-etched one. Therefore, the naked-eyed qualitative detectability of vapors by nanocellulose could be realized by the divergence in color shift which is of great importance in chemical sensors.

Publisher URL: www.sciencedirect.com/science

DOI: S0144861717306963

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.