5 years ago

Molecular Dynamics Simulation of the Adsorption and Aggregation of Ionic Surfactants at Liquid–Solid Interfaces

Molecular Dynamics Simulation of the Adsorption and Aggregation of Ionic Surfactants at Liquid–Solid Interfaces
Atefeh Khoshnood, Abbas Firoozabadi, Felipe Jiménez-Ángeles
Structure of surfactants adsorbed on solid surfaces is a key knowledge in various technologies and applications. It is widely accepted in the literature that the surface–surfactant headgroup electrostatic interaction is a major driving force of adsorption of ionic surfactants on charged substrates. Our result shows that the adsorption of surfactants as monomers is driven by both electrostatic and nonelectrostatic interactions. Further adsorption of surfactants in aggregates is essentially driven by the tail–tail interaction. To a great extent, the substrate–tail interaction determines the structures of the adsorbed surfactant aggregates. Water and counterions influence the headgroup–substrate and tail–substrate interactions. We investigate two vastly different surfactants and substrates by molecular dynamics simulations: (1) SDS on alumina (SDS–Al2O3), and (2) CTAB on silica (CTAB–SiO2). We study the adsorption of a single surfactant at the solid surface by the density profiles and free energy of adsorption. In the SDS–Al2O3 system, we analyze the free energy of adsorption on the substrate covered by aggregates of different sizes. We examine the configurations of surfactants and the distribution of water and ions at the liquid–solid interface as the number of adsorbed molecules on the substrate increases. In the SDS–Al2O3 system, the headgroup adsorption is mediated by the Na+ counterions; the adsorbed water molecules may be displaced by the surfactant headgroup but unlikely by the hydrocarbon tails. As a function of the surfactant adsorption, we observe single surfactants, aggregates of different morphologies, and bilayers. The CTAB–SiO2 system combines both electrostatic attraction of the surfactant headgroup and affinity for the surfactant’s hydrocarbon tail. At low surfactant adsorption, aggregates and single surfactant molecules lie on the substrate; hemimicelles form at intermediate adsorption; and micelles form at high surfactant adsorption. Our results agree with experimental observations and indicate two different surfactant adsorption mechanisms where the tail–tail and tail–substrate interactions play a fundamental role.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b09466

DOI: 10.1021/acs.jpcc.7b09466

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.