5 years ago

16% Efficient Silicon/Organic Heterojunction Solar Cells using Narrow Band-Gap Conjugated Polyelectrolytes Based Low Resistance Electron-Selective Contacts

16% Efficient Silicon/Organic Heterojunction Solar Cells using Narrow Band-Gap Conjugated Polyelectrolytes Based Low Resistance Electron-Selective Contacts
Dopant-free silicon (Si)/organic heterojunction solar cells (HSCs) have drawn much attention due to their immense potential in achieving high power conversion efficiencies (PCEs) with simple device architectures and fabrication procedures. However, unsatisfied rear-contacts severely hinder further improvement in PCEs for these promising HSCs. Exploring effective cathodic interfacial materials with low temperature fabrication to replace conventional diffusion layer shows the extremely importance of technical innovation. Here, poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b’]dithiophene-2,6-diyl-alt-ethylhexyl-3-fluorothieno[3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7)-based narrow band-gap conjugated polyelectrolytes, PTB7-NBr and PTB7-NSO3, are firstly employed as effective cathodic interfacial materials in Si/organic HSCs to improve the passivation and electron transporting property at n-Si/Al interface. The low-temperature proceeded electron-selective contact of n-Si/PTB7-NBr/Al gives a contact resistivity as low as 6.7 ± 0.8 mΩ cm2, upon it a remarkable PCE of 16.0% is finally obtained from a completely dopant-free Si/organic HSC. The understanding of conjugated polyelectrolytes on interfacial modification may lead a path to fabricate high performance Si/organic heterojunction devices with efficient charge transfer process at a simplified fabrication process.

Publisher URL: www.sciencedirect.com/science

DOI: S2211285517307048

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.