3 years ago

Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into “sticky” superhydrophobic paper

Combination of microsized mineral particles and rosin as a basis for converting cellulosic fibers into “sticky” superhydrophobic paper
The unique features of cellulosic paper including flexibility, biodegradability, and low cost enables it as a versatile, sustainable biomaterial for promising applications. In the paper industry, microsized mineral particles are widely used in the production of printing/writing paper grades, while rosin derived from trees is the earliest internal sizing agent for paper hydrophobication. On the basis of existing commercial practices associated with the use of mineral particles and rosin in paper production, we present a process concept of converting cellulosic fibers (paper-grade pulp) into “sticky” superhydrophobic paper involving the use of microsized mineral particles and rosin (a tree-derived natural product, mainly a mixture of resin acids, especially abietic acid with chemical formula of C19H29COOH). Internal filling of cellulosic networks with mineral particles was basically used to hold out the mineral particles added at the surface, and the delicate integration of wet-end/surface applications of mineral particles with paper surface engineering with rosin/alum led to the development of “sticky” superhydrophobicity, i.e., ultrahigh water-repellency and strong adhesion to water. This proposed concept may provide valuable implications for expanding the use of paper-based products to unconventional applications, e.g., ultrahigh-performance ink jet printing paper for mitigating the “coffee-ring effect” and paper-based microfluidic devices for biomedical testing.

Publisher URL: www.sciencedirect.com/science

DOI: S0144861717306756

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.