5 years ago

Electroconductive and catalytic performance of polypyrrole/montmorillonite/silver composites synthesized through in situ oxidative polymerization

Electroconductive and catalytic performance of polypyrrole/montmorillonite/silver composites synthesized through in situ oxidative polymerization
Hee Taik Kim, Manwar Hussain, Sung Soo Park, Xuan Tin Tran
The present study demonstrates a simple approach to the formation of polypyrrole/montmorillonite/silver (PPy/Mt/Ag) composites via in situ oxidative polymerization of pyrrole (Py) in the presence of AgNO3 acting as a direct oxidant. The polymerization was performed in the presence of dodecylbenzenesulfonic acid, which acts as a stabilizing and doping agent. The morphological, structural, and thermal properties of PPy/Mt/Ag composites are discussed in detail and a possible formation mechanism is proposed. The electrical conductivities of the composites pressed at different pressing pressures were investigated using four-probe analyzer. X-ray diffraction, transmission electron microscopy, and scanning electron microscopy results indicated the partially exfoliated structure of the composites and Fourier transforms infrared results suggested the strong interactions between SiOSi groups in Mt and NH groups in PPy chains. The addition of Mt in the PPy polymer enhanced thermal property of the polymer. The conductivity of 1.08 S cm−1 was observed in the sample with 20 wt % Mt loading and applied pressure of 5 MPa. The composites obtained in the present study catalyze the reduction of methylene blue by sodium borohydride, achieving 92% conversion of MB to colorless within a few minutes. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 135, 45986.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/app.45986

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.