4 years ago

d-Peptides as inhibitors of PR3-membrane interactions

d-Peptides as inhibitors of PR3-membrane interactions
Proteinase 3 (PR3) is a neutrophil serine protease present in cytoplasmic granules but also expressed at the neutrophil surface where it mediates proinflammatory effects. Studies of the underlying molecular mechanisms have been hampered by the lack of inhibitors of the PR3 membrane anchorage. Indeed while there exist inhibitors of the catalytic activity of PR3, its membrane interfacial binding site (IBS) is distinct from its catalytic site. The IBS has been characterized both by mutagenesis experiments and molecular modeling. Through docking and molecular dynamics simulations we have designed d-peptides targeting the PR3 IBS. We used surface plasmon resonance to evaluate their effect on the binding of PR3 to phospholipid bilayers. Next, we verified their ability of binding to PR3 via fluorescence spectroscopy and isothermal titration calorimetry. The designed peptides did not affect the catalytic activity of PR3. A few peptides bound to PR3 hydrophobic pockets and inhibited PR3 binding to lipids. While the (KFF)3K d-peptide inconveniently showed a significant affinity for the lipids, another d-peptide (SAKEAFFKLLAS) did not and it inhibited the PR3-membrane binding site with IC50 of about 40μM. Our work puts forward d-peptides as promising inhibitors of peripheral protein-membrane interactions, which remain high-hanging fruits in drug design.

Publisher URL: www.sciencedirect.com/science

DOI: S0005273617303528

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.