5 years ago

New method to characterize and correct with sub-µs precision gradient delays in bipolar multispoke RF pulses

Denis Bihan, Vincent Gras, Alexis Amadon, Alexandre Vignaud, Nicolas Boulant, Franck Mauconduit
Purpose Small gradient delays with respect to radiofrequency (RF) events can have disastrous effects on the performance of bipolar spokes RF pulses used in parallel transmission (pTx). In this work, we propose a new method to characterize and correct this delay with sub-µs precision. Methods By determining experimentally the phase Δφ producing a 0 ° flip angle excitation in a α0°−α180°+Δφ bipolar two-spoke pulse configuration at multiple slice locations, we demonstrate the possibility of deducing the underlying gradient delay with precision. The technique also suggests prospectively compensating for the same delay by altering the phase of the second pulse. The approach was tested with a multislice gradient echo sequence on a phantom and on one healthy volunteer at 7 Tesla. Results Application of the method returned an accuracy of approximately 50 ns on the gradient delay measurement, a performance shown in fact to be desirable for high-performance pTx 2D applications. Phase corrections of up to 180 ° on the second spoke RF pulse in the bipolar configuration allowed us to obtain similar performance as for unipolar designs, yet with significantly shorter excitations. Conclusions A simple and accurate gradient-delay calibration method was proposed that offers the possibility of using bipolar multispoke pulses in multislice protocols. Magn Reson Med 78:2194–2202, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26614

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.