5 years ago

Dual echo Dixon imaging with a constrained phase signal model and graph cuts reconstruction

Stephen J. Riederer, Eric G. Stinson, Joshua D. Trzasko, Joel G. Fletcher
Purpose The purpose of this work is to derive and demonstrate constrained-phase dual-echo Dixon imaging within a maximum likelihood framework solved with a regularized graph-cuts-guided optimization. Theory and Methods Dual-echo Dixon reconstruction is fundamentally underdetermined; however, adopting a constrained-phase signal model reduces the number of unknowns and the nonlinear problem can be solved under a maximum likelihood framework. Period shifts in the field map (manifesting as fat/water signal swaps) must also be corrected. Here, a regularized cost function promotes a smooth field map and is solved with a graph-cuts-guided greedy binary optimization. The reconstruction shown here is compared to two other prevalent Dixon reconstructions in experimental phantom and human studies. Results Reconstructed images of the water and fat signal are shown for a phantom study, and in vivo studies of foot/ankle, pelvis, and CE-MRA of the thighs. The method shown here compared favorably with the other two methods. Large field inhomogeneities on the order of 20 ppm were resolved, thereby avoiding the fat and water signal swaps present in images reconstructed with the other methods. Conclusion Constrained-phase dual-echo Dixon imaging solved with a regularized graph-cuts-guided optimization has been derived and demonstrated to successfully separate water and fat images in the presence of large magnetic field inhomogeneities. Magn Reson Med 78:2203–2215, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26620

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.