4 years ago

Multifrequency reconstruction for frequency-modulated bSSFP

Johannes Tran-Gia, Herbert Köstler, Valentin Ratz, Anne Slawig, Tobias Wech, Henning Neubauer, Thorsten Bley
Purpose Banding artifacts in images acquired by balanced steady-state free precession (bSSFP) remain a challenge in MRI as they considerably reduce image quality, and diagnostic value deteriorates accordingly. As the steady-state tolerates small shifts in frequency, it is possible to acquire frequency-modulated bSSFP. Unfortunately, standard reconstructions of such measurements suffer from signal loss. Our study proposes a multifrequency reconstruction and demonstrates its capability of suppressing banding artifacts while retaining the high signal level of standard bSSFP. Methods Numerical simulations in vitro and in vivo measurements were performed using both standard bSSFP and frequency-modulated bSSFP. The modulated data were reconstructed using a multifrequency approach consisting of three steps: phase correction, multiple reconstructions for different assumed frequencies, and maximum intensity projection. Results Although standard bSSFP measurements showed banding artifacts that compromised the image quality, standard reconstructions of frequency-modulated acquisitions suffered from signal loss. In contrast, images reconstructed from frequency-modulated data using the proposed multifrequency reconstruction showed no visual bandings and featured a higher signal-to-noise ratio (SNR). The SNR gain for phantom and in vivo measurements ranged from 1.23 to 1.49. Conclusions The presented multifrequency reconstruction for frequency-modulated bSSFP provides images showing no bandings and featuring high SNR in short scan times. Magn Reson Med 78:2226–2235, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26630

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.