4 years ago

Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model

Simon J. Graham, Kevan J.T. Anderson, Laleh Golestanirad, Clare E. McElcheran, Benson Yang
Purpose Elongated implanted conductors can interact with the radiofrequency (RF) transmission field during MRI, posing safety concerns of excessive heating in patients with deep brain stimulators. A technique using parallel RF transmission (pTx) is evaluated on an anthropomorphic heterogeneous model with bilateral and unilateral curved wires. Methods Amplitude and phase were optimized by simulation to minimize heating surrounding the implanted wires and to minimize B1+ inhomogeneity for four-channel and eight-channel pTx in a heterogeneous model. MRI experiments were conducted in an equivalent test phantom created from a common digital mesh file. Results In four-channel pTx, maximum local specific absorption rate (SAR) was reduced in both unilateral and bilateral wires by 47% and 59%, respectively, but with compromised B1+ homogeneity. Optimized eight-channel pTx substantially reduced local SAR compared with birdcage coil RF excitation in both unilateral and bilateral wires (reduction of maximum local SAR of 79% and 87%, respectively). B1+ inhomogeneity was limited to 17% and 26%, respectively. Experimental validation with four-channel pTx showed 80% and 92% temperature reduction at the tips of wire 1 and wire 2, respectively. Conclusion This pTx approach yields promising reductions in local SAR at the tips of unilateral and bilateral implanted wires while maintaining image quality in simulation and experiment. Magn Reson Med 78:2408–2415, 2017. © 2017 International Society for Magnetic Resonance in Medicine.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/mrm.26622

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.