4 years ago

Differentially expressed miRNA-210 during follicular-luteal transition regulates pre-ovulatory granulosa cell function targeting HRas and EFNA3

Astha Shukla, Dheer Singh, Suneel Kumar Onteru, Sunita Dahiya
Ovarian folliculogenesis, ovulation and luteinization are an important prerequisite for fertility performance in mammals. Spatial and temporal key factors and proteins for their regulation are well known. Recent advancement in the field of molecular biology led to the discovery of another class of gene regulators, microRNA (miRNA). Previous studies on profiling of miRNA in buffalo ovaries revealed that miRNA-210 (miR-210) is differently expressed in follicular-luteal transition. Therefore, the present study was planned to ascertain the role of miR-210 in buffalo granulosa cells. Cultured granulosa cells were transfected with miR-210 mimic. Effect of overexpression of miR-210 was analyzed on granulosa cell marker genes (CYP19A1 and PCNA) which were significantly downregulated (p<0.05). Further, target genes of miR-210 were screened using Target Scan software v7.1 and a list of 37 genes with cumulative weight context score (CWCS) > 0.5 was sorted followed by their functional annotation and network analyses using PANTHER and STRING software. Bioinformatics analyses identified HRas gene as a potential hub gene of miR-210targeted genes. HRas has been shown to be involved in diverse biological pathways regulating ovarian functions. An expression analysis of HRas was further validated both in vitro and in vivo. EFNA3 (EFHRIN-A3), another identified target of miR-210 known to be involved in angiogenesis, was also downregulated in miR-210 transfected granulosa cells. In conclusion, the present study demonstrated that miR-210 can regulate granulosa cell function at preovulatory stage through HRas and EFNA3. Further studies are needed to find the mechanism how miR-210 regulates the granulosa cells function through these targets. This article is protected by copyright. All rights reserved

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/jcb.26508

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.