5 years ago

Transcriptional changes measured in rice roots after exposure to arsenite-contaminated sediments

Ute Feiler, Alexandra Brinke, Roland Klein, Sebastian Buchinger, Georg Reifferscheid

Abstract

Transcriptional analyses are discussed to provide a deeper understanding of the molecular mechanisms underlying toxic effects. Thus, they can complement classic ecotoxicological test methods and potentially allow the identification of biomarkers associated to the exposure of chemical stressors and or adverse biological effects. This feasibility study intended to identify a set of potential gene expression biomarkers for arsenite-exposure in rice roots that could complement the informative value of an existing sediment-contact test with rice. A sediment-contact test with Oryza sativa with the parameters inhibition of root and shoot elongation as phenotypic endpoints was used as basis. Rice plants were exposed to arsenite-spiked sediments. Transcriptomic changes in response to arsenite were observed by means of cDNA-microarray analysis regarding the whole-transcriptome at two sublethal arsenite concentrations. In order to identify candidate biomarker genes, differentially expressed genes were identified. Arsenite-induced differentially expressed genes were significantly associated with gene ontology (GO)-terms that indicated a general stress response. Of the differentially expressed genes, five genes were selected and their expression was measured at seven arsenite concentrations by means of qPCR in order to obtain their expression profiles. Three candidate biomarker genes showed a dose-dependent upregulation, while two showed no clear dose-dependent expression. The expression of all candidate biomarkers was also assessed in rice plants grown on two arsenic-contaminated natural sediments, but only one biomarker gene showed the expected upregulation.

Publisher URL: https://link.springer.com/article/10.1007/s11356-017-0515-z

DOI: 10.1007/s11356-017-0515-z

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.