5 years ago

Energy recovery from commercial-scale composting as a novel waste management strategy

Energy recovery from commercial-scale composting as a novel waste management strategy
This study reports operational information from a commercial-scale Aerated Static Pile (ASP) composting system with energy recovery, one of the few currently in operation globally. A description of this innovative system is followed by operational data on energy capture efficiency for 17 experimental trials with variable compost vapor and heat sink temperatures. Energy capture was directly and predictably related to the differential between compost vapor and heat sink temperatures, with energy capture ranging from 17,700 to 32,940 kJ/h with a compost vapor temperature range of 51–66 °C. A 5-day temperature lag time existed between compost pile formation, and when compost vapor temperatures were sufficiently high for energy recovery (≥50 °C). The energy recovery system also exhibited a time lag between the initiation of aeration and when the vapor reaching the heat exchanger reached pile vapor temperature. Consequently, future ASP composting sites employing an energy recovery system may have to alter aeration system design and schedules to compensate for any type of heating-up phase that reduces energy recovery.

Publisher URL: www.sciencedirect.com/science

DOI: S0306261917315817

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.