5 years ago

Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model)

In this work, an analysis of co-pyrolysis municipal solid waste and paper sludge with additive (MgO) were investigated by TG-FTIR and Py-GC/MS. The proportions of paper sludge in the blends were 10%, 30% and 50%, respectively. The pyrolysis characteristics, the yields of pollutants (CO, SO2, NO, HCl) and CO2, the products and chemical composition, the kinetic behaviors and the distribution activation energy model were investigated. After adding paper sludge, the sums of pollutants reduced, the amount of aliphatic hydrocarbons decreased and oxygenates compounds increased. After adding MgO, the results showed that the residue mass decreased, the emission of pollutants reduced, the ratio of aliphatic hydrocarbons became larger, the ratio of oxygenates compounds became smaller, and the activation energy reduced. According to the beforementioned results, the 30% percentage of paper sludge in the mixture with MgO might be the most suitable ratio for co-pyrolysis.

Publisher URL: www.sciencedirect.com/science

DOI: S036054421731887X

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.