5 years ago

Study on the Geometric and Electronic Structures of Al n Si m (n = 3, 4, 5; m = 1, 2, 3, 4) Clusters

Abstract

Genetic algorithm combined with the semi-empirical Hamitonian AM1/PM3 is used to search the low energy isomers of Al n Si m (n = 3, 5, m ≤ 3 and n = 4, m ≤ 4) and the charged clusters with 20 and 28 valence electrons. The candidate structures were optimized by the density functional theory PBE0 and B3LYP models with the triply split basis sets including polarization functions. The electronic structures show that Al–Si binary clusters behave like metal clusters. The molecular orbitals accord with that predicted by the jellium model, and the electron localization function shows the valence electrons are delocalized over the entire clusters. The clusters having 20 and 28 valence electrons exhibit pronounced stabilities and large energy gaps. The 20 valence electrons of Al4Si2 and Al3Si3 +, Al5Si form closed shells 1S 21P 62S 21D 10. Al4Si4 and Al5Si3 have oblate structures and the P, D, F levels spilt considerably in these clusters. The electron density distributions suggest that doping silicon in the aluminum clusters enhances the stability considerably.

Publisher URL: https://link.springer.com/article/10.1007/s10876-017-1305-y

DOI: 10.1007/s10876-017-1305-y

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.