5 years ago

Sensor activity with respect to alkali metals of a carbon nanotube edge-modified with amino group

N. P. Boroznina, I. V. Zaporotskova, L. V. Kozhitov

Abstract

The work is devoted to the theoretical study of sensor activity of nanosystems based on a carbon nanotube modified with a functional amino group, with respect to certain metal atoms and ions. The calculations were performed within the molecular cluster model using the semiempirical MNDO scheme and density functional theory DFT. The mechanism of attachment of an amino group to the open edge of zigzag single-walled carbon nanotubes possessing cylindrical symmetry was studied to design a chemically active sensor based on them. The key geometric and electron-energy characteristics of the constructed systems have been determined. The interaction of the sensors thus constructed with atoms and ions of some metals—potassium, sodium, and lithium—has been studied. The scanning of arbitrary surfaces containing selected atoms or ions has been modeled; from the interaction energies, and the activity of the single-walled carbon nanotube + amino group probe system has been determined with respect to the selected elements to be initialized. Analysis of the charge state of the system has established that the sensor action mechanism is realized, as a result of which the number of charge carriers in the resulting nanotubular system serving as a sensor probe changes, which provides the appearance of conductivity in the system. The presence of metallic atoms can be experimentally detected by the change in the potential in a probe system based on a nanotube with a functional group. The theoretical studies have proved the possibility of creating highly sensitive sensors based on the most promising nanomaterial— carbon nanotubes functionalized with active chemical groups, including the amino group NH2.

Publisher URL: https://link.springer.com/article/10.1134/S0036023617110213

DOI: 10.1134/S0036023617110213

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.