3 years ago

How Does the P7C3-Series of Neuroprotective Small Molecules Prevent Membrane Disruption?

How Does the P7C3-Series of Neuroprotective Small Molecules Prevent Membrane Disruption?
Maryam Heydari Dokoohaki, Amin Reza Zolghadr
Molecular dynamics (MD) simulations are conducted to suggest a mechanism of action for the aminopropyl dibromocarbazole derivative (P7C3) small molecule, which protects neurons from apoptotic cell death. At first, the influence of embedded Aβ42 stacks on the structure of membrane is studied. Then, the effect of P7C3 molecules on the Aβ42 fibril enriched membrane and Aβ42 fibril depleted membrane (when Aβ42 fibrils are originally dissolved in the aqueous phase) are evaluated. Also, the formation of an amyloid ion channel in the Aβ42 enriched membrane is examined by calculating deuterium order parameter, density profile, and surface thickness. For Aβ42 in the fully inserted state, ion channel-like structures are formed. The presence of P7C3 molecules in this case just postpones membrane destruction but could not prevent pore formation. In contrast, when both Aβ42 and P7C3 molecules are embedded in the aqueous solution, the P7C3 molecules are self-assembled at membrane/ionic aqueous solution interface and prevent the precipitation and deposition of Aβ42 fibrils into the membrane.

Publisher URL: http://dx.doi.org/10.1021/acs.jcim.7b00151

DOI: 10.1021/acs.jcim.7b00151

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.