4 years ago

Nanoparticle stochastic motion in the inertial regime and hydrodynamic interactions close to a cylindrical wall.

Portonovo S Ayyaswamy, Helena Vitoshkin, Ravi Radhakrishnan, Hsiu-Yu Yu, David M Eckmann
We have carried out direct numerical simulations (DNS) of the fluctuating Navier-Stokes equation together with the particle equations governing the motion of a nanosized particle or nanoparticle (NP) in a cylindrical tube. The effects of the confining boundary, its curvature, particle size, and particle density variations have all been investigated. To reveal how the nature of the temporal correlations (hydrodynamic memory) in the inertial regime is altered by the full hydrodynamic interaction due to the confining boundaries, we have employed the Arbitrary Lagrangian-Eulerian (ALE) method to determine the dynamical relaxation of a spherical NP located at various positions in the medium over a wide span of time scales compared to the fluid viscous relaxation time τv = a(2)/v, where a is the spherical particle radius and v is the kinematic viscosity. The results show that, as compared to the behavior of a particle in regions away from the confining boundary, the velocity autocorrelation function (VACF) for a particle in the lubrication layer initially decays exponentially with a Stokes drag enhanced by a factor that is proportional to the ratio of the particle radius to the gap thickness between the particle and the wall. Independent of the particle location, beyond time scales greater than a(2)/v, the decay is always algebraic followed by a second exponential decay (attributed to the wall curvature) that is associated with a second time scale D(2)/v, where D is the vessel diameter.

Publisher URL: http://doi.org/10.1103/PhysRevFluids.1.054104

DOI: 10.1103/PhysRevFluids.1.054104

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.