4 years ago

Synthetic microbial consortia enable rapid assembly of pure translation machinery

Synthetic microbial consortia enable rapid assembly of pure translation machinery
Cheemeng Tan, Luis E Contreras-Llano, Tingrui Pan, Michael Chavez, Jinzhen Fan, Yunfeng Ding, Fernando Villarreal
Assembly of recombinant multiprotein systems requires multiple culturing and purification steps that scale linearly with the number of constituent proteins. This problem is particularly pronounced in the preparation of the 34 proteins involved in transcription and translation systems, which are fundamental biochemistry tools for reconstitution of cellular pathways ex vivo. Here, we engineer synthetic microbial consortia consisting of between 15 and 34 Escherichia coli strains to assemble the 34 proteins in a single culturing, lysis, and purification procedure. The expression of these proteins is controlled by synthetic genetic modules to produce the proteins at the correct ratios. We show that the pure multiprotein system is functional and reproducible, and has low protein contaminants. We also demonstrate its application in the screening of synthetic promoters and protease inhibitors. Our work establishes a novel strategy for producing pure translation machinery, which may be extended to the production of other multiprotein systems.

Publisher URL: https://www.nature.com/articles/nchembio.2514

DOI: 10.1038/nchembio.2514

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.