4 years ago

Internal tissue references for <sup>18</sup>Fluorodeoxyglucose vascular inflammation imaging: Implications for cardiovascular risk stratification and clinical trials

Peter Herscovitch, Roberto Maass-Moreno, Davis M. Vigneault, Veit Sandfort, Marissa B. Mallek, Nehal N. Mehta, Ahmed Sadek, Mark A. Ahlman, David A. Bluemke, Jenny Dave, Mariana A. F. Selwaness
Introduction

18Fluorodeoxyglucose (FDG) positron emission tomography (PET) uptake in the artery wall correlates with active inflammation. However, in part due to the low spatial resolution of PET, variation in the apparent arterial wall signal may be influenced by variation in blood FDG activity that cannot be fully corrected for using typical normalization strategies. The purpose of this study was to evaluate the ability of the current common methods to normalize for blood activity and to investigate alternative methods for more accurate quantification of vascular inflammation.

Materials and methods

The relationship between maximum FDG aorta wall activity and mean blood activity was evaluated in 37 prospectively enrolled subjects aged 55 years or more, treated for hyperlipidemia. Target maximum aorta standardized uptake value (SUV) and mean background reference tissue activity (blood, spleen, liver) were recorded. Target-to-background ratios (TBR) and arterial maximum activity minus blood activity were calculated. Multivariable regression was conducted, predicting uptake values based on variation in background reference and target tissue FDG uptake; adjusting for gender, age, lean body mass (LBM), blood glucose, blood pool activity, and glomerular filtration rate (GFR), where appropriate.

Results

Blood pool activity was positively associated with maximum artery wall SUV (β = 5.61, P<0.0001) as well as mean liver (β = 6.23, P<0.0001) and spleen SUV (β = 5.20, P<0.0001). Artery wall activity divided by blood activity (TBRBlood) or subtraction of blood activity did not remove the statistically significant relationship to blood activity. Blood pool activity was not related to TBRliver and TBRspleen (β = −0.36, P = NS and β = −0.58, P = NS, respectively)

Conclusions

In otherwise healthy individuals treated for hyperlipidemia, blood FDG activity is associated with artery wall activity. However, variation in blood activity may mask artery wall signal reflective of inflammation, which requires normalization. Blood-based TBR and subtraction do not sufficiently adjust for blood activity. Warranting further investigation, background reference tissues with cellular uptake such as the liver and spleen may better adjust for variation in blood activity to improve assessment of vascular activity.

Publisher URL: http://journals.plos.org/plosone/article

DOI: 10.1371/journal.pone.0187995

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.