5 years ago

Gap junctional coupling between retinal amacrine and ganglion cells underlies coherent activity integral to global object perception [Neuroscience]

Gap junctional coupling between retinal amacrine and ganglion cells underlies coherent activity integral to global object perception [Neuroscience]
Sandeep Kumar, Kaushambi Roy, Stewart A. Bloomfield

Coherent spike activity occurs between widely separated retinal ganglion cells (RGCs) in response to a large, contiguous object, but not to disjointed objects. Since the large spatial separation between the RGCs precludes common excitatory inputs from bipolar cells, the mechanism underlying this long-range coherence remains unclear. Here, we show that electrical coupling between RGCs and polyaxonal amacrine cells in mouse retina forms the synaptic mechanism responsible for long-range coherent activity in the retina. Pharmacological blockade of gap junctions or genetic ablation of connexin 36 (Cx36) subunits eliminates the long-range correlated spiking between RGCs. Moreover, we find that blockade of gap junctions or ablation of Cx36 significantly reduces the ability of mice to discriminate large, global objects from small, disjointed stimuli. Our results indicate that synchronous activity of RGCs, derived from electrical coupling with amacrine cells, encodes information critical to global object perception.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.