4 years ago

Role of estrogen receptor beta in neural differentiation of mouse embryonic stem cells [Medical Sciences]

Role of estrogen receptor beta in neural differentiation of mouse embryonic stem cells [Medical Sciences]
Mukesh K. Varshney, Ivan Nalvarte, Per Antonson, Vaidheeswaran Ganapathy, Jan–Ake Gustafsson, Jose Inzunza, Diana Lupu, Joelle Ruegg

The ability to propagate mature cells and tissue from pluripotent stem cells offers enormous promise for treating many diseases, including neurodegenerative diseases. Before such cells can be used successfully in neurodegenerative diseases without causing unwanted cell growth and migration, genes regulating growth and migration of neural stem cells need to be well characterized. Estrogen receptor beta (ERβ) is essential for migration of neurons and glial cells in the developing mouse brain. To examine whether ERβ influences differentiation of mouse embryonic stem cells (mESC) into neural lineages, we compared control and ERβ knockout (BERKO) mESCs at defined stages of neural development and examined the effects of an ERβ-selective ligand (LY3201) with a combination of global and targeted gene-expression profiling and the expression of key pluripotency markers. We found that ERβ was induced in embryoid bodies (EBs) and neural precursor cells (NPCs) during development. Proliferation was higher in BERKO NPCs and was inhibited by LY3201. Neurogenesis was reduced in BERKO ES cells, and oligodendrogliogenesis was enhanced. BERKO EBs expressed higher levels of key ectodermal and neural progenitor markers and lower levels of markers for mesoderm and endoderm lineages. ERβ-regulated factors are involved in cell adhesion, axon guidance, and signaling of Notch and GABA receptor pathways, as well as factors important for the differentiation of neuronal precursors into dopaminergic neurons (Engrailed 1) and for the oligodendrocyte fate acquisition (Olig2). Our data suggest that ERβ is an important component for differentiation into midbrain neurons as well as for preventing precocious oligodendrogliogenesis.

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.