5 years ago

Uptake of Long Protein-Polyelectrolyte Nanotubes by Dendritic Cells

Uptake of Long Protein-Polyelectrolyte Nanotubes by Dendritic Cells
Saghi Saghazadeh, Alain M. Jonas, Bruno de Geest, Sophie Demoustier-Champagne, Simon Van Herck, Diana G. Ramírez-Wong
Anisotropic nanostructures, such as nanotubes, incorporating bioactive molecules present interesting features for application as drug delivery carriers. Here, we present the synthesis of layer-by-layer (LbL) nanotubes including protein (ovalbumin) layers and go from simple to more complex synergetic combinations of synthetic and natural polyelectrolytes, leading to structures with tunable properties. The rigidity in organic and aqueous media, the stability in buffer solution and the uptake of different LbL tubes by dendritic cells (DCs) are analyzed to contrast size and chemistry. The most rigid studied systems appear as the best candidates to be internalized by cells, regardless of the chemistry of their outermost layers. The successful transport of long protein-loaded robust rigid nanotubes to the cytoplasm of DCs paves the way for their use as new cargo for the delivery of large amounts of antigen to such cells.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b01353

DOI: 10.1021/acs.biomac.7b01353

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.