5 years ago

Thermoelectricity Enhanced Electrocatalysis

Thermoelectricity Enhanced Electrocatalysis
Xiang Zhang, Sadegh Yazdi, Pulickel Ajayan, Chandra Sekhar Tiwary, Yang Liu, Gelu Costin, Cristiano F. Woellner, Tiva Sharifi
We show that thermoelectric materials can function as electrocatalysts and use thermoelectric voltage generated to initiate and boost electrocatalytic reactions. The electrocatalytic activity is promoted by the use of nanostructured thermoelectric materials in a hydrogen evolution reaction (HER) by the thermoelectricity generated from induced temperature gradients. This phenomenon is demonstrated using two-dimensional layered thermoelectric materials Sb2Te3 and Bi0.5Sb1.5Te3 where a current density approaching ∼50 mA/cm2 is produced at zero potential for Bi0.5Sb1.5Te3 in the presence of a temperature gradient of 90 °C. In addition, the turnover frequency reaches to 2.7 s–1 at 100 mV under this condition which was zero in the absence of temperature gradient. This result adds a new dimension to the properties of thermoelectric materials which has not been explored before and can be applied in the field of electrocatalysis and energy generation.

Publisher URL: http://dx.doi.org/10.1021/acs.nanolett.7b04244

DOI: 10.1021/acs.nanolett.7b04244

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.