5 years ago

Combined Experimental and Theoretical Investigation of Heating Rate on Growth of Iron Oxide Nanoparticles

Combined Experimental and Theoretical Investigation of Heating Rate on Growth of Iron Oxide Nanoparticles
Wolfgang Tremel, Raffaello Potestio, Maziar Heidari, Hamed Sharifi Dehsari, Davide Donadio, Gerhard Jakob, Anielen Halda Ribeiro, Kamal Asadi
Thermal decomposition is a promising route for the synthesis of highly monodisperse magnetite nanoparticles. However, the apparent simplicity of the synthesis is counterbalanced by the complex interplay of the reagents with the reaction variables that determine the final particle size and dispersity. Here, we present a combined experimental and theoretical study on the influence of the heating rate on crystal growth, size, and monodispersity of iron oxide nanoparticles. We synthesized monodisperse nanoparticles with sizes varying from 6.3 to 27 nm simply by controlling the heating rate of the reaction. The nanoparticles show size-dependent superparamagnetic behavior. Using numerical calculations based on the classical nucleation theory and growth model, we identified the relative time scales associated with the heating rate and precursor-to-monomer (growth species) conversion rate as a decisive factor influencing the final size and dispersity of the nanoparticles.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02872

DOI: 10.1021/acs.chemmater.7b02872

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.