5 years ago

A dispersive liquid-liquid microextraction based on solidification of floating organic droplet followed by injector port silylation coupled with gas chromatography–tandem mass spectrometry for the determination of nine bisphenols in bottled carbonated beverages

In the present study, a method has been efficiently developed for the first time to determine nine bisphenol analogues [bisphenol A (BPA), bisphenol C (BPC), bisphenol AF (BPAF), bisphenol E (BPE), bisphenol F (BPF), bisphenol G (BPG), bisphenol M (BPM), bisphenol S (BPS), and bisphenol Z (BPZ)] together in bottled carbonated beverages (collected from the local market of Lucknow, India) using dispersive liquid-liquid microextraction process. This is based on solidification of floating organic droplet (DLLME-SFO) followed by injector port silylation coupled with gas chromatography–tandem mass spectrometry. The process investigated parameters of DLLME-SFO (including the type of extraction and disperser solvents with their volumes, effect of pH, ionic strength, and the sample volume), factors influencing to injection port derivatization like, collision energy, injector port temperature, derivatizing reagent with sample injection volume, and type of organic solvent. BPA, BPF, BPZ, and BPS were detected in each sample; whereas, other bisphenols were also detected in some carbonated beverage samples. After optimizing the required conditions, good linearity of analytes was achieved in the range of 0.097–100ngmL−1 with coefficients of determination (R2) 0.995. Intra-day and inter day precision of the method was good, with relative standard deviation (% RSD)10.95%. The limits of detection (LOD) and limits of quantification (LOQ) values of all bisphenols were ranged from 0.021 to 0.104ngmL−1 and 0.070 to 0.343ngmL−1, respectively. The recovery of extraction was good (73.15–95.08%) in carbonated beverage samples and good enrichment factors (96.36–117.33) were found. Thus, the developed method of microextraction was highly precise, fast, and reproducible to determine the level of contaminants in bottled carbonated beverages.

Publisher URL: www.sciencedirect.com/science

DOI: S0021967317315935

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.