5 years ago

Programming asynchronous replication in stem cells

Programming asynchronous replication in stem cells
Yosef Buganim, Reba Condiotti, Tal Burstyn-Cohen, Yehudit Bergman, Howard Cedar, Kirill Makedonski, Merav Hecht, Hagit Masika, Marganit Farago
Many regions of the genome replicate asynchronously and are expressed monoallelically. It is thought that asynchronous replication may be involved in choosing one allele over the other, but little is known about how these patterns are established during development. We show that, unlike somatic cells, which replicate in a clonal manner, embryonic and adult stem cells are programmed to undergo switching, such that daughter cells with an early-replicating paternal allele are derived from mother cells that have a late-replicating paternal allele. Furthermore, using ground-state embryonic stem (ES) cells, we demonstrate that in the initial transition to asynchronous replication, it is always the paternal allele that is chosen to replicate early, suggesting that primary allelic choice is directed by preset gametic DNA markers. Taken together, these studies help define a basic general strategy for establishing allelic discrimination and generating allelic diversity throughout the organism.

Publisher URL: https://www.nature.com/articles/nsmb.3503

DOI: 10.1038/nsmb.3503

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.