5 years ago

Handedness of Twisted Lamella in Banded Spherulite of Chiral Polylactides and Their Blends

Handedness of Twisted Lamella in Banded Spherulite of Chiral Polylactides and Their Blends
Ming-Chia Li, Bernard Lotz, Wen-Chun Hsu, Wei-Tsung Chuang, Hsiao-Fang Wang, Rong-Ming Ho, Tao Wen, Chen-Hung Chiang
Banded spherulite resulting from lamellar twisting due to the imbalanced stresses at opposite fold surfaces can be formed by isothermal crystallization of chiral polylactide and its blends with poly(ethylene glycol) (PEG). Using a polarized light microscope, the handedness of the twisted lamella in banded spherulite is determined. With the same growth axis along the radial direction as evidenced by wide-angle X-ray diffraction (WAXD) for isothermally crystallized samples at different temperatures, the twisted lamellae of chiral polylactides (poly(l-lactide) (PLLA) and poly(d-lactide) (PDLA)) display opposite handedness. The split-type Cotton effect on the C═O stretching motion of vibrational circular dichroism (VCD) spectra helps determine the helix handedness (i.e., conformational chirality). The results indicate that the conformational chirality can be defined by the molecular chirality through intramolecular chiral interactions. Moreover, the preferred sense of the lamellar twist in the banded spherulite corresponds to the twisting direction identified by the C–O–C vibration motion of VCD spectra, reflecting the role of intermolecular chiral interactions in the packing of polylactide helices. Similar results are obtained in the blends of chiral polylactides and poly(ethylene glycol) (PEG, a polymer compatible with polylactide), indicating that the impact of chirality is intrinsic irrespective of the specific crystallization conditions. In contrast to the chiral polylactides, the spectrum of the crystalline stereocomplex that associates PLLA and PDLA shows VCD silence. The spectroscopic results are in line with the morphological observations. No banded spherulites are observed in the stereocomplex crystallites due to the symmetric packing of mirror L- and D-chain conformations in the fold surfaces and the crystallites core.

Publisher URL: http://dx.doi.org/10.1021/acs.macromol.7b00318

DOI: 10.1021/acs.macromol.7b00318

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.