5 years ago

In situ transformation of geopolymer gels to self-supporting NaX zeolite monoliths with excellent compressive strength

In situ transformation of geopolymer gels to self-supporting NaX zeolite monoliths with excellent compressive strength
Geopolymers are a new class of green high-strength aluminosilicate materials, which generally maintain an amorphous structure due to the limitations related to their chemical compositions and reaction conditions but possess the ability to form molecular sieves. In this work, the in-situ transformation of geopolymers into self-supporting NaX zeolite monoliths of relatively large sizes was examined under hydrothermal conditions and various parameters of the synthesis process were optimized. The obtained results indicated that the optimal transformation conditions for geopolymers with a Si/Al ratio of 4.0 are as follows: precursors composed of metakaolin and modified industrial sodium silicate with a Na2O/SiO2 molar ratio of 1.0, H2O/Na2O molar ratio of 70, hydrothermal synthesis time of 18 h and a temperature of 90 °C. According to the obtained X-ray diffraction (XRD) data, the synthesized NaX Monoliths exhibited characteristic reflections consistent with those of standard NaX zeolites and possessed high degrees of crystallinity, while scanning electron microscopy revealed that the produced molecular sieves exhibited well-defined morphology. In addition, the zeolitic monoliths exhibited excellent compressive strength for potential practical applications.

Publisher URL: www.sciencedirect.com/science

DOI: S1387181117307369

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.