4 years ago

Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite

Editable Supercapacitors with Customizable Stretchability Based on Mechanically Strengthened Ultralong MnO2 Nanowire Composite
Xiaodong Chen, Xian Jun Loh, Xinran Zhou, Shaowu Pan, Zhisheng Lv, Dianpeng Qi, Wenlong Li, Yuxin Tang, Jiaqi Wei, Yi Zeng, Wei Zhang, Zhiqiang Zhu, Yifei Luo, Yanyan Zhang
Although some progress has been made on stretchable supercapacitors, traditional stretchable supercapacitors fabricated by predesigning structured electrodes for device assembling still lack the device-level editability and programmability. To adapt to wearable electronics with arbitrary configurations, it is highly desirable to develop editable supercapacitors that can be directly transferred into desirable shapes and stretchability. In this work, editable supercapacitors for customizable shapes and stretchability using electrodes based on mechanically strengthened ultralong MnO2 nanowire composites are developed. A supercapacitor edited with honeycomb-like structure shows a specific capacitance of 227.2 mF cm−2 and can be stretched up to 500% without degradation of electrochemical performance, which is superior to most of the state-of-the-art stretchable supercapacitors. In addition, it maintains nearly 98% of the initial capacitance after 10 000 stretch-and-release cycles under 400% tensile strain. As a representative of concept for system integration, the editable supercapacitors are integrated with a strain sensor, and the system exhibits a stable sensing performance even under arm swing. Being highly stretchable, easily programmable, as well as connectable in series and parallel, an editable supercapacitor with customizable stretchability is promising to produce stylish energy storage devices to power various portable, stretchable, and wearable devices. Editable supercapacitors with customizable stretchability, which can be directly transformed into various customizable shapes and stretchable structures, are developed. In particular, the supercapacitor with a honeycomb-like structure can maintain nearly 98% initial capacitance even after 10 000 stretch-and-release cycles under reversible 400% tensile strain.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/adma.201704531

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.