4 years ago

Topologically protected refraction of robust kink states in valley photonic crystals

Topologically protected refraction of robust kink states in valley photonic crystals
Yang Yu, Xiao Lin, Baile Zhang, Gennady Shvets, Kueifu Lai, Yidong Chong, Haoran Xue, Zhaoju Yang, Fei Gao
Recently discovered1,2 valley photonic crystals (VPCs) mimic many of the unusual properties of two-dimensional (2D) gapped valleytronic materials3,4,5,6,7,8,9. Of the utmost interest to optical communications is their ability to support topologically protected chiral edge (kink) states3,4,5,6,7,8,9 at the internal domain wall between two VPCs with opposite valley-Chern indices. Here we experimentally demonstrate valley-polarized kink states with polarization multiplexing in VPCs, designed from a spin-compatible four-band model. When the valley pseudospin is conserved, we show that the kink states exhibit nearly perfect out-coupling efficiency into directional beams, through the intersection between the internal domain wall and the external edge separating the VPCs from ambient space. The out-coupling behaviour remains topologically protected even when we break the spin-like polarization degree of freedom (DOF), by introducing an effective spin–orbit coupling in one of the VPC domains. This also constitutes the first realization of spin–valley locking for topological valley transport.

Publisher URL: https://www.nature.com/articles/nphys4304

DOI: 10.1038/nphys4304

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.