5 years ago

Designing metal-contained enzyme mimics for prodrug activation

Designing metal-contained enzyme mimics for prodrug activation
Enzyme-activated prodrug therapy (EAPT) is a widely-used and effective treatment method for cancer by converting prodrugs into drugs at the demanded time and space, whose key step is prodrug activation. Traditional prodrug activations are mostly dependent on natural enzymes, which are unstable, expensive and hard to be functionalized. The emerging enzyme mimics, especially the metal-contained enzyme mimics (MEMs), provide a potential chance for improving the traditional EAPT because of their high stability, low cost and easiness of preparation and functionalization. The existing MEMs can be classified into three categories: catalytic core-scaffold MEM (csMEM), nanoparticle MEM (npMEMs) and metal-organic framework (MOF) MEM (mofMEM). These MEMs can mimic diverse functions corresponding to natural enzymes, and some of which are potentially used in prodrug activation, such as DNase, RNase, carbonate esterase, etc. In this review, we briefly summarize the MEMs according to their structure and composition, and highlight the successful and potential applications for prodrug activation mediated by hydrolase-like and oxidoreductase-like MEMs.

Publisher URL: www.sciencedirect.com/science

DOI: S0169409X17300376

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.