5 years ago

In-situ Elastic Strain Mapping During Micromechanical Testing Using EBSD

Compared to more commonly used strain measurement techniques, electron backscatter diffraction (EBSD) offers improved spatial resolution and measurement sensitivity. Additionally, EBSD can provide the full deformation tensor, whereas other techniques, such as digital image correlation (DIC), are limited to only in-plane strains and rotations. In this work, EBSD was used to measure strains and rotations in-situ during testing of a single-crystal silicon micromechanical test specimen. The theta-like specimen geometry was chosen due to the complex and spatially-varying strain states that exist in the circular frame of the sample during testing, as well as the nominally uniform strains in the central web. Full-field strain maps were generated for each strain and rotation component and compared to those from finite element analyses (FEA), showing strong agreement in all cases. Additionally, potential sources of error and their impact on both measurement accuracy and uncertainty are discussed.

Publisher URL: www.sciencedirect.com/science

DOI: S0304399117303042

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.