5 years ago

The Effects of 4'-Esterified Resveratrol Derivatives on Calcium Dynamics in Breast Cancer Cells.

Hayden P Doughty, Jason D Kenealey, Colton M Crowther, Jordan P Hastings, Austin J Eells, Joshua A Peterson, Merritt B Andrus, Trent A Johnson
Triple-negative breast cancer is a highly aggressive subtype of breast cancer. Frequently, breast cancer cells modulate their calcium signaling pathways to optimize growth. Unique calcium pathways in breast cancer cells could serve as a way to target tumorigenic cells without affecting normal tissue. Resveratrol has previously been shown to activate calcium signaling pathways. We use cell viability, single-cell calcium microscopy, and RT-PCR assays to determine the activity and mechanism of three different 4'-esterified resveratrol derivatives. We demonstrate that two of the derivatives reduce cell viability more effectively than resveratrol in MDA-MB-231 human breast cancer cells. The derivatives also activate similar pro-apoptotic calcium signaling pathways. In particular, the pivalated and butyrated resveratrol derivatives are intriguing putative chemotherapeutics because they are more effective at decreasing cell viability in vitro and inhibiting the plasma membrane Ca(2+)-ATPase, a protein that is often modulated in breast cancer.

Publisher URL: http://doi.org/10.3390/molecules22111968

DOI: 10.3390/molecules22111968

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.