5 years ago

Effects of Si/SiO2 interface stress on the performance of ultra-thin-body field effect transistors: A first-principles study.

Mincheol Shin, Hyo-Eun Jung
First-principles density functional theory (DFT) based device simulations are performed for Si ultra-thin-body (UTB) field effect transistors with the explicit SiO2 atoms in the gate dielectric. In order to evaluate the Si/SiO2 interface stress effects on the UTB device performance, the interface stress tensor is extracted from the Si/SiO2 atomic structure by DFT calculations. The influence of the interface stress on the transport properties is examined through full quantum mechanical non-equilibrium Green's function calculations. Based on the analysis of the band structure and transfer characteristics, we demonstrate that the interface stress can characterize the overall effects of the SiO2 gate dielectric on the device performance in the nanoscale regime.

Publisher URL: http://doi.org/10.1088/1361-6528/aa9a69

DOI: 10.1088/1361-6528/aa9a69

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.