3 years ago

Molecular influence in high-strain-rate microparticle impact response of poly(urethane urea) elastomers

Molecular influence in high-strain-rate microparticle impact response of poly(urethane urea) elastomers
The dynamic deformation response of select model poly(urethane urea) elastomers (PUU) at high strain rates is investigated via an all-optical laser-induced projectile impact test (LIPIT). LIPIT measurements allow the direct visualization of the impact of micro-projectiles (silica spheres) on substrates and in-situ characterization, including depth of penetration and the extent of rebound of the micro-projectiles. PUUs are proven to be robust and the silica spheres are observed to rebound from them upon impact. In addition, for PUUs a strong correlation was noted between the coefficient of restitution and the maximum depth of penetration. Also, the coefficient of restitution data is comparable to that of glassy polycarbonate (PC), which is in great contrast to the comparison of the corresponding ambient storage modulus data obtained via dynamic mechanical analysis at 1 Hz. We hypothesize that high-rate deformation-induced glass transition is a plausible molecular relaxation mechanism towards macroscopic, dynamic stiffening/strengthening in PUUs.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117306493

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.