4 years ago

Source apportionment of PM2.5 at the Lin'an regional background site in China with three receptor models

Source apportionment of fine particulate matter (PM2.5) were conducted at the Lin'an Regional Atmospheric Background Station (LA) in the Yangtze River Delta (YRD) region in China from July 2014 to April 2015 with three receptor models including principal component analysis combining multiple linear regression (PCA-MLR), UNMIX and Positive Matrix Factorization (PMF). The model performance, source identification and source contribution of the three models were analyzed and inter-compared. Source apportionment of PM2.5 was also conducted with the receptor models. Good correlations between the reconstructed and measured concentrations of PM2.5 and its major chemical species were obtained for all models. PMF resolved almost all masses of PM2.5, while PCA-MLR and UNMIX explained about 80%. Five, four and seven sources were identified by PCA-MLR, UNMIX and PMF, respectively. Combustion, secondary source, marine source, dust and industrial activities were identified by all the three receptor models. Combustion source and secondary source were the major sources, and totally contributed over 60% to PM2.5. The PMF model had a better performance on separating the different combustion sources. These findings improve the understanding of PM2.5 sources in background region.

Publisher URL: www.sciencedirect.com/science

DOI: S0169809517308815

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.