4 years ago

The added value of including key microbial traits to determine nitrogen-related ecosystem services in managed grasslands

Sandra Lavorel, Michael Bahn, Thomas Pommier, Franck Poly, Catherine Baxendale, Karl Grigulis, Jean-Christophe Clément, Nicolas Legay, Richard D. Bardgett, Amélie A. M. Cantarel
Despite playing central roles in nutrient cycles and plant growth, soil microbes are generally neglected in the study of ecosystem services (ES), due to difficulties to assess their diversity and functioning. However, to overcome these hurdles, new conceptual approaches and modern tools now provide a means to assess the role of micro-organisms in the evaluation of ES. In managed grasslands, soil microbes are central in providing nitrogen (N)-related ES such as maintenance of soil fertility and retention of mineral forms of N. Here, we applied state-of-the-art techniques in microbial ecology and plant functional ecology to uncover the intrinsic link between N-related bacterial functional groups, important plant functional traits, environmental factors and three proxies of maintenance of soil fertility and potential for N-leaching across managed grasslands in three regions of Europe. By constructing well-defined structural equation modelling, we showed that including key microbial traits improve on average more than >50% of the total variances of ES proxies, that is, ammonium (NH4+) or nitrate (NO3−) leaching, and soil organic matter content. Geographic differences arose when considering the direct relationships of these ES proxies with specific microbial traits: nitrate leaching was positively correlated to the maximum rate of nitrification, except in the Austrian site and potentially leached NH4+–N was negatively correlated to the fungi/bacteria ratio, with the exception of the French site. Synthesis and applications. The integration of soil microbial functional traits in the assessment of nitrogen-related grassland ecosystem services has direct contributions for understanding sustainable management of grassland ecosystems. The fundamental aspects of this study suggest that integrating a soil microbial component in grassland management may enhance sustainability of such grass-based agroecosystems.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1365-2664.13010

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.