4 years ago

Optimising the spatial planning of prescribed burns to achieve multiple objectives in a fire-dependent ecosystem

Luke P. Shoo, Hawthorne L. Beyer, Brooke A. Williams, Kerrie A. Wilson
There is potential for negative consequences for the ecological integrity of fire-dependent ecosystems as a result of inappropriate fire regimes. This can occur when asset (property) protection is prioritised over conservation objectives in burn programs. Optimisation of fire management for multiple objectives is rarely undertaken. Here, we use integer linear programming to identify burn scheduling solutions that will cost-effectively achieve asset protection and conservation objectives. An approach to burn scheduling that favours a risk-averse asset protection strategy results in poor conservation outcomes. Conversely, a conservation-focused approach achieves only modest asset protection benefits. However, when formulated as a multi-objective problem, good conservation outcomes can be realised with only a small reduction in potential benefits for asset protection. A conservation-focused approach resulted in substantially more heterogeneity in burns at multiple spatial scales and a marked reduction in mean time since fire among all forest patches relative to an asset protection scenario. This increase in heterogeneity improves ecological integrity, while the resulting reduction in fuel load is beneficial for asset protection. Synthesis and applications. Mathematical optimisation is a powerful framework for informing fire management that improves the prioritisation and scheduling of controlled burns to efficiently achieve management objectives. By quantifying the trade-offs that exist between the two competing objectives of conservation and asset protection, we demonstrate that compromise solutions can be identified that achieve good outcomes for both objectives. In a transparent and equitable manner, we show that conservation value may be improved within a fire-dependent ecosystem with only modest concession to asset protection performance. Explicitly evaluating trade-offs among competing objectives enables managers to identify potentially undesirable outcomes, and facilitate development of preferred solutions. Heterogeneous burning under the auspices of conservation also has the potential to reduce overall fuel loads within the ecosystem and thus its value for asset protection is likely underappreciated.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1111/1365-2664.12920

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.