5 years ago

Effect of the polymer-substrate interactions on crystal nucleation of polymers grafted on a flat solid substrate as studied by molecular simulations

Effect of the polymer-substrate interactions on crystal nucleation of polymers grafted on a flat solid substrate as studied by molecular simulations
The crystallization behaviors of three types of polymer systems grafted on a flat solid substrate with different grafting densities were investigated by dynamic Monte Carlo simulations. For both of the systems with low and medium grafting densities, nucleation induction period becomes shorter with the increasing polymer-substrate interactions. However, the nucleation mechanisms are different. For the systems with low grafting density, the increase of the attractive interactions results in the enhancement of heterogeneous nucleation process of grafted polymers. For the systems with medium grafting density, the attractive interactions can compensate for the conformational entropy loss induced by the restriction of the substrate, resulting in the increase of local segment density near substrate surface and the improvement of nucleation ability. Meanwhile, nucleation mode changes from intermolecular fringed-micelle nucleation to intramolecular chain-folding nucleation with the increasing interactions. For the systems with high grafting density, crystallization behaviors are almost not affected by polymer-substrate interactions. These findings are helpful to reveal the microscopic mechanism of crystallization behaviors of polymer nanocomposites and the corresponding reinforcement mechanism.

Publisher URL: www.sciencedirect.com/science

DOI: S0032386117306791

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.