5 years ago

The impact of time-varying CO2 injection rate on large scale storage in the UK Bunter Sandstone

Carbon capture and storage (CCS) is expected to play a key role in meeting targets set by the Paris Agreement and for meeting legally binding greenhouse gas emissions targets set within the UK (Energy and Climate Change Committee, 2016). Energy systems models have been essential in identifying the importance of CCS but they neglect to impose constraints on the availability and use of geologic CO2 storage reservoirs. In this work we analyse reservoir performance sensitivities to varying CO2 storage demand for three sets of injection scenarios designed to encompass the UK's future low carbon energy market. We use the ECLIPSE reservoir simulator and a model of part of the Southern North Sea Bunter Sandstone saline aquifer. From a first set of injection scenarios we find that varying amplitude and frequency of injection on a multi-year basis has little effect on reservoir pressure response and plume migration. Injectivity varies with site location due to variations in depth and regional permeability. In a second set of injection scenarios, we show that with envisioned UK storage demand levels for a large coal fired power plant, it makes no difference to reservoir response whether all injection sites are deployed upfront or gradually as demand increases. Meanwhile, there may be an advantage to deploying infrastructure in deep sites first in order to meet higher demand later. However, deep-site deployment will incur higher upfront cost than shallow-site deployment. In a third set of injection scenarios, we show that starting injection at a high rate with ramping down, a low rate with ramping up or at a constant rate makes little difference to the overall injectivity of the reservoir. Therefore, such variability is not essential to represent CO2 storage in energy systems models resolving plume and pressure evolution over decadal timescales.

Publisher URL: www.sciencedirect.com/science

DOI: S1750583617306023

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.