4 years ago

Silver nanoparticles stimulate the proliferation of sulfate reducing bacterium Desulfovibrio vulgaris

Silver nanoparticles stimulate the proliferation of sulfate reducing bacterium Desulfovibrio vulgaris
The intensive use of silver nanoparticles (AgNPs) in cosmetics and textiles causes their release into sewer networks of urban water systems. Although a few studies have investigated antimicrobial activities of nanoparticles against environmental bacteria, little is known about potential impacts of the released AgNPs on sulfate reducing bacteria in sewers. Here, we investigated the effect of AgNPs on Desulfovibrio vulgaris Hidenborough (D. vulgaris), a typical sulfate-reducing bacterium (SRB) in sewer systems. We found AgNPs stimulated the proliferation of D. vulgaris, rather than exerting inhibitory or biocidal effects. Based on flow cytometer detections, both the cell growth rate and the viable cell ratio of D. vulgaris increased during exposure to AgNPs at concentrations of up to 100 mg/L. The growth stimulation was dependent on the AgNP concentration. These results imply that the presence of AgNPs in sewage may affect SRB abundance in sewer networks. Our findings also shed new lights on the interactions of nanoparticles and bacteria.

Publisher URL: www.sciencedirect.com/science

DOI: S0043135417309375

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.