4 years ago

The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process

The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process
This study examines the feasibility of a novel nanofiltration membrane bioreactor (NF-MBR) followed by reverse osmosis (RO) process for water reclamation at 90% recovery and using an ultrafiltration MBR (UF-MBR)+RO as baseline for comparison. Both MBRs adopted the same external hollow fiber membrane configurations and operating conditions. The collected permeates of the MBRs were subsequently fed to the respective RO systems. The results showed that the NF-MBR (operated at a constant flux of 10 L/m2h) achieved superior MBR permeate quality due to enhanced biodegradation and high rejection capacity of the NF membrane, leading to lower RO fouling rates (∼3.3 times) as compared to the UF-MBR. Further analysis indicated that the cake layer fouling that caused the cake-enhanced osmotic pressure (CEOP) effect contributed predominantly to the transmembrane pressure (TMP) increase in the NF-MBR, while irreversible pore fouling was the major reason for UF membrane fouling. Furthermore, it was found that the biopolymers (i.e., organics with MW > 10 kDa) were the main components present in the foulants of the NF/UF membranes and RO membranes. The analysis indicated that the NF-MBR + RO system at recovery of 90% has comparable energy consumption as the UF-MBR + RO system at recovery of 75%. Our findings proved the feasibility of the NF-MBR + RO for water reclamation at a high recovery rate.

Publisher URL: www.sciencedirect.com/science

DOI: S0043135417309296

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.